If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-18+2+23x=180
We move all terms to the left:
7x^2-18+2+23x-(180)=0
We add all the numbers together, and all the variables
7x^2+23x-196=0
a = 7; b = 23; c = -196;
Δ = b2-4ac
Δ = 232-4·7·(-196)
Δ = 6017
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(23)-\sqrt{6017}}{2*7}=\frac{-23-\sqrt{6017}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(23)+\sqrt{6017}}{2*7}=\frac{-23+\sqrt{6017}}{14} $
| -4j=-5j-6 | | 5=-7-6x+4x | | (x)=4x+25 | | 6=t6 | | x(x+1)-3(x+1)=0 | | 90+4k+159=180 | | 1/8(x-62)=11+2x | | 10-16x=26 | | 2c=94 | | 90+2k+153=180 | | 3k+7k=4(9-10k) | | 2+5x=80 | | 3-6w=-3 | | 2z+252=180 | | 30+3x=5(-x+6)-32 | | 1000=30x+0.15 | | 3x-83=310 | | 25=z-16 | | 0=6a+2a | | 4(3x+2)=3(x-6 | | -1-48x+41x+3=180 | | 4a+-10=2a+12 | | 2x+60+x=120 | | x/5=7x | | -8x+3=33 | | 8q-6=q+1 | | 4(x-3)/8=0 | | 3x+9=6x-21 | | 14=9-x | | 6w-16=8 | | 1x=1x-16 | | 10(1+3x)-2=22 |